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Abstract. Estimating human and camera trajectories with accurate
scale in the world coordinate system from a monocular video is a highly
desirable yet challenging and ill-posed problem. In this study, we aim to
recover expressive parametric human models (i.e., SMPL-X) and corre-
sponding camera poses jointly, by leveraging the synergy between three
critical players: the world, the human, and the camera. Our approach
is founded on two key observations. Firstly, camera-frame SMPL-X es-
timation methods readily recover absolute human depth. Secondly, hu-
man motions inherently provide absolute spatial cues. By integrating
these insights, we introduce a novel framework, referred to as WHAC,
to facilitate world-grounded expressive human pose and shape estima-
tion (EHPS) alongside camera pose estimation, without relying on tradi-
tional optimization techniques. Additionally, we present a new synthetic
dataset, WHAC-A-Mole, which includes accurately annotated humans
and cameras, and features diverse interactive human motions as well as
realistic camera trajectories. Extensive experiments on both standard
and newly established benchmarks highlight the superiority and efficacy
of our framework. The code and dataset are available on the homepage1.
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1 Introduction

Expressive human pose and shape estimation (EHPS) has garnered considerable
research attention due to its wide applications across the entertainment, fashion,
and healthcare industries. Despite remarkable advancements in recent years, the
majority of EHPS methods primarily focus on estimating parametric human
models (i.e., SMPL-X [29]) in the camera coordinate system. This approach falls
short in dynamic situations where the camera and subject move concurrently.
Estimating 3D trajectories in the world coordinate system (world-grounded)
from 2D camera footage is challenging as the 3D-to-2D projection results in
a loss of critical spatial information. Consequently, camera trajectories deduced
are thus inherently "scaleless", and the depth of humans directly estimated from
the camera perspective lacks validity.
⋆ Equal contributions.
1 Homepage: https://wqyin.github.io/projects/WHAC/.

https://wqyin.github.io/projects/WHAC/
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Fig. 1: WHAC synergizes human-camera (camera-frame SMPL-X estimation), camera-
world (visual odometry), and human-world (our proposed MotionVelocimeter) model-
ing for constructing world-grounded human and camera trajectories.

In this work, we demonstrate the synergy between humans, cameras, and the
world. First, existing camera-frame EHPS methods, although not specifically su-
pervised to estimate human depth directly, can still accurately deduce the true
depth. This only requires a reasonably accurate focal length that can be obtained
from the video capture devices or estimated [18]. Second, root translation is a
critical component of human motions, allowing the latter to serve as a strong
prior after an association is learned. Hence, by analyzing human poses, one can
make an informed estimation of the velocity of human movement. Building upon
these insights, we present WHAC, a novel framework designed to jointly esti-
mate expressive human models and camera movements using a monocular video.
For any given input video, camera-frame SMPL-X parameters and a preliminary
camera trajectory are first estimated using plug-and-play EHPS [5] and visual
odometry (VO) [39] models. The human-camera relative positions are first de-
duced. These estimations are then utilized with VO estimations to canonicalize
the sequences of human poses for accurate velocity estimation. Consequently, the
scale of the camera trajectory can be recovered. It is noteworthy that WHAC
pioneers whole-body, optimization-free estimation in a world-grounded context
to recover human and camera trajectories jointly.

Moreover, the development of a new dataset becomes essential to more ac-
curately assess model performance on world-grounded human motions and cam-
era trajectories across a broader spectrum of scenarios. Recent studies have
underscored the surprising efficacy of synthetic data [2, 5, 6, 41], thanks to its
diversity and controllability. Inspired by these findings, we introduce WHAC-
A-Mole, a comprehensive synthetic dataset for World-grounded Humans And
Cameras with a rich collection of Animated subjects under MOving viewpoints
in muLtiple Environments. WHAC-A-Mole features comprehensive motion se-
quences that include 1) interactive human activities from DLP-MoCap [3], 2)
partner dances from DD100 [36], in addition to 3) the standard AMASS [25]
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motion repository. Notably, WHAC-A-Mole includes automatically generated
camera trajectories that mimic cinematic filming techniques, such as tracking
shots and arc shots, thereby offering a high level of realism.

We validate our WHAC on standard benchmarks and WHAC-A-Mole to
obtain consistent performance gains compared to the state-of-the-art (SoTA)
methods under both camera-frame and world-grounded settings. WHAC demon-
strates a surprising capability to handle corner cases when motion-based and
camera-based observations contradict, paving the way for potential applications.

In summary, our contributions are three-fold. First, we propose WHAC, a
novel regression-based framework that capitalizes on human priors for the pio-
neering world-grounded EHPS method. Second, we contribute WHAC-A-Mole,
a comprehensive benchmark with accurate human and camera annotations of di-
verse human activities. Third, our empirical evaluations underscore the superior
performance of WHAC across multiple benchmarks.

2 Related Works

2.1 Expressive Human Pose and Shape Estimation (EHPS)

EHPS captures body, face, and hands from monocular images or videos, typically
through parametric human models (e.g ., SMPL-X [29]). Early optimization-
based method [29] fits SMPL-X models on 2D keypoints, and was soon out-
performed by regression-based methods that were trained on a large amount of
paired data. Two-stage methods estimate body parameters first, then hand/face
parameters from crop-out image patches [8, 10, 20, 27, 28, 33, 45, 48]. Recently,
OSX [22] proposes the one-stage paradigm that estimates body, hand, and face
with shared features. This paradigm shift simplifies the pipeline and led to the
first foundation model SMPLer-X [5] that achieved unprecedented generalization
ability across key benchmarks. However, despite their success, these methods es-
timate parametric humans in the camera coordinate, lacking information on the
global trajectory especially when the camera is moving.

2.2 World-grounded Recovery of Humans and Cameras

Estimation of human trajectory in world coordinate system typically requires
a multi-camera setup [4, 7, 12, 13, 16, 30, 47], additional wearable devices (e.g .,
IMU [11,26] or electromagnetic sensors [17]). Methods that require only a single
camera often rely on other assumptions: Yu et al . [43] needs the scene to be
provided by the user and Luvizon et al . [24] assumes a static camera. D&D [21],
GLAMR [44], and TRACE [37] estimate global human trajectories from single-
frame poses or image features. However, camera and human rotation have a
coupled effect on camera-frame global orientation estimation, which leads to
ambiguity. Liu et al . [23] leverages Structure-from-Motion (SfM) [34] to recon-
struct both camera and human trajectories and adjust human’s scale to match
the camera’s, which may not reflect the absolute scale. Recently, SLAHMR lever-
ages SLAM [38] and human motion prior [32] in the optimization to recover
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Fig. 2: Overview of WHAC. SMPL-X estimator extracts camera-frame SMPL-X with
dummy depth [5], which is recovered in Sec. 3.2. The scaleless camera trajectory es-
timated by VO [39] is then used to canonicalize the human trajectory to estimate its
velocity and thus scale in Sec. 3.3. A camera trajectory is then derived for alignment
and scale recovery, which subsequently updates the human trajectory in Sec. 3.4.

humans and the camera. However, the process is computationally expensive and
takes excessively long to complete. PACE [19] also leverages VO [39] for camera
pose estimation and a faster human motion to significantly accelerate the opti-
mization process but is still time-consuming. WHAM [35] is the first regression-
based work in the domain that features real-time performance. It takes camera
estimation (angular velocity) as the input and estimates human parameters in
the camera frame and human trajectory in the world frame through separate
branches, while the camera trajectory is not recovered. Our WHAC aims to re-
cover both human and camera trajectories in the world coordinate with accurate
scales.

3 Methodology

Recovering accurate 3D dimensions from 2D observations is an ill-posed problem:
a small object at a close range may appear the same as a large object at a far
range. In this section, we aim to address two ambiguities with priors that are
surprisingly effective, but not thoroughly utilized in existing EHPS works: the
parametric humans themselves.

3.1 Preliminaries

Problem Formulation. We aim to estimate human and camera pose sequences in
the world coordinate system. The humans are represented by SMPL-X parame-
ters: global orientation θwgo ∈ R1×3, translation twh ∈ R1×3, body pose θb ∈ R21×3,
left hand pose θlh ∈ R15×3, right hand pose θrh ∈ R15×3, jaw pose θj ∈ R1×3,
body shape β ∈ R10 and facial expression ϕ ∈ R10. The cameras are represented
by world-frame rotation Rw

c ∈ R1×3 and translation twc ∈ R1×3. In this work, the
superscript indicates the coordinate system (i.e., w for world and c for camera).
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Fig. 3: a) Different pairs of focal length f and tz can correspond to the same image.
b) Human trajectories H derived from camera trajectories C of different scales can
be vastly different in both shape and direction, despite that the same camera-frame
human root translations tch are used.

Camera-frame SMPL-X Estimation typically omits absolute depth estimation.
Hence, primary metrics (e.g ., PA-MPJPE, MPJPE, and PVE) all perform root
alignment. We employ SMPLer-X [5], a strong foundation model that demon-
strates accurate estimation of human pose and shapes. We add additional GRUs
before the prediction heads and finetune the model to better capture the tem-
poral cues.

Visual Odometry (VO) typically provides high-quality Rw
c ; the trajectory formed

by twc is scaleless but accurate in shape. We adopt DPVO [39] and follow the
standard practice to define the first camera frame of the input video as the world
coordinate system.

3.2 Recovering Camera-space Human Root Translation

Mainstream EHPS methods [5,22,27] recover parametric humans in the camera
space and adopt a weak perspective camera model, which considers all points to
be at the same depth away from the camera.f∗ 0 0

0 f∗ 0
0 0 1

tx + δx
ty + δy
tz + δz

 ≈

f∗ 0 0
0 f∗ 0
0 0 1

tx + δx
ty + δy

tz

 , (1)

where f∗ indicates the focal length in NDC (Normalized Device Coordinate)
space (image pixel coordinates are normalized into [−1, 1]). tch = (tx, ty, tz) is
the root translation in the camera frame, (δx, δy, δz) is the relative translation
of a point relative to the root. Hence, the projected 2D point (NDC space) is
written as: [

u∗

v∗

]
=

[
f∗(tx + δx)/tz
f∗(ty + δy)/tz

]
=

[
s(tx + δx)
s(ty + δy)

]
, (2)

where s is the scale parameter. The SMPL-X estimator also predicts camera
parameters (s, tx, ty) to reproject SMPL-X joints on the image plane. Hence, we
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obtain the relationships between focal length, depth, and scale:

s =
f∗

tz
=

2

I
× f

tz
⇒ tz =

2

I
× f

s
, (3)

where f is the focal length in pixels. I is the resolution (side pixel length) of the
input crop to the SMPL-X estimator.

We point out that although these camera-frame methods do not supervise
the human root depth tz, by training the model to produce a scale s that overlays
SMPL-X accurately back on the image plane, the model implicitly learns human
root depth tz that is coupled with focal length f as illustrated in Fig. 3a). A
dummy focal length of 5,000 is often used [5,22,27], however, this leads to unre-
alistic human root depth tz. We highlight that accurate intrinsic parameters are
accessible from many devices, and our empirical results show using the diagonal
pixel length [18] also yields satisfactory results as shown in Tab. 8.

3.3 Estimating World-frame Human Motions for Scale Extraction

In recent years, there has been a plethora of high-quality optical motion cap-
ture datasets that become available, covering a wide range of human activities.
Previous art [35] estimates human global trajectory from 2D keypoint observa-
tions, which may not capture subtle 3D information. Hence, we propose to learn
absolute scale from 3D human motions.

First, for a SMPL-X sequence of K frames, estimated in the camera coordi-
nate system, we compute the 3D joint coordinates. Specifically, for each frame:

Jc = M(θcgo, t
c, θb, θlh, θrh, θj , β, ϕ), J

c ∈ RK×15×3, (4)

where M is the SMPL-X parametric model. We select 15 joints (14 LSP [15]
joints and the pelvis) from the original 55 joints. We then compute the joints in
the world coordinate system:

Jw = T vo × Jc, T vo = [Rw
c |twc ], (5)

where T vo is the visual odometry’s estimation (camera-to-world transformation).
Note that twc does not have a valid scale.

To facilitate the training, we standardize the input: we define a canonical
frame where the human is root-aligned with zero global orientation. We then
compute the canonical transformation T cano by using the first (0th) frame’s
rotation and offset the translation to zero:

T cano = [Rcano|tcano], Rcano = (Rw
c,0 × θcgo,0)

−1 = (θcgo,0)
−1, tcano = −pw0 , (6)

where Rw
c,0 is 0th camera rotation in the world frame estimated from visual

odometry, θcgo,0 is 0th global orientation estimated in the camera space, pw0 is
the pelvis joint of Jw

0 . Note Rw
c,0 is an identity matrix I3 as the 0th camera

frame is defined as the world frame. All joints are then canonicalized as Jcano =
T cano × Jw.
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MotionVelocimeter then estimates per-frame velocity in the canonical space:

V cano = MotionVelocimeter(Jcano), (7)

where the velocity is then de-canonicalized back to the world frame:

V w = (T cano)−1 × V cano, (8)

with V w, we can reconstruct the human trajectory with scale in the world co-
ordinate system. MotionVelocimeter only requires a simple architecture that we
include in the Supplementary Material.

3.4 Recovering Scaled Human and Camera Trajectories

As we obtain human trajectory twh with absolute scale, one possible way is to
align the human trajectory derived from the VO-estimated camera trajectory
using camera-frame human root translation to twh . However, Fig. 3b) shows that
such alignment is problematic as the human trajectory derived from scaleless
camera trajectory may be invalid. Hence, we propose to transfer the scale to the
camera trajectory in two steps. First, we derive a camera trajectory from the
human trajectory:

Tw
c,derived = (T cano)−1 × T cano

h × (T c
h)

−1, (9)

Tw
c,derived = [Rw

c,derived|twc,derived]. (10)

This derived camera trajectory already has an accurate scale with a good shape.
However, we find that the camera trajectory estimated by VO has a better,
more robust shape because it can leverage visual cues that are much denser than
human motion cues. In this light, we perform Umeyama’s method [40] (shown as
U→) to align the VO-estimated camera trajectory with the human-derived camera
trajectory twc,derived while discard Rw

c,derived and keeping the camera rotation Rw
c :

twc,final = twc
U→ twc,derived. (11)

Hence, we then update human trajectory by deriving it from the aligned camera
trajectory twc,final:

Tw
h,final = [Rw

h,final|twh,final] = Tw
c,final × T c

h, T
w
c,final = [Rw

c |twc,final]. (12)

As a result, we obtain human trajectory twh,final and camera trajectory twc,final,
both in the world coordinate system and with absolute scales.

4 WHAC-A-Mole Dataset

We highlight that WHAC-A-Mole combines fine-crafted automatic camera move-
ments with varied characters animated with diverse, high-quality motion se-
quences to generate a dataset with accurate camera and SMPL-X annotations.
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Table 1: Dataset Comparison. #Inst.: number of human instances (crops). #Seq.:
number of video sequences. R/S: Real or Synthetic. Multi.: multiperson scenes. Track.:
track ID labels. HHI: human-human interaction motions. *: Based on the released
version. †: EgoSet. ⋄: typically short (<100 frames) clips.

Dataset #Inst. #Seq. R/S Multi. Track. Contact HHI Camera Human

3DPW [26] 74.6K 60 R ✓ × × ✓ Moving SMPL
RICH [14] 476K 141 R ✓ ✓ ✓ ✓ Mixed SMPL
HCM* [19] 5379 21 S × N.A. × N.A. Moving SMPL
EMDB [17] 109K 81 R × N.A. × N.A. Moving SMPL
EgoBody† [46] 175K 125 R ✓ ✓ × ✓ Moving SMPL-X
BEDLAM [2] 951K 10.4K⋄ S ✓ ✓ × × Mixed SMPL-X
SynBody [41] 2.7M 27K⋄ S ✓ ✓ × × Static SMPL-X

WHAC-A-Mole 1.46M 2434 S ✓ ✓ ✓ ✓ Moving SMPL-X

The dataset is constructed with the advanced human data synthesis toolbox XR-
Feitoria [9]. It leverages SMPL-XL (a layered extension of SMPL-X) to create
virtual humans with diverse body shapes, clothing, and accessories. We follow
SynBody [41] in the scene setup, subject creation, and placement. We further
improve the data synthesized in two ways: diverse motion sources (Sec. 4.1)
and camera trajectory generation (Sec. 4.2). In Tab. 1, we compare WHAC-
A-Mole with popular video-based benchmarks with both camera and human
annotations. WHAC-A-Mole features a competitive scale of training instances
and video sequences, multiperson scenes with track IDs, contact labels, accurate
camera pose and SMPL-X annotations. We split WHAC-A-Mole by motion se-
quence into 80%:20% for training and testing. Examples of WHAC-A-Mole are
visualized in Fig. 4.

4.1 Interactive Human Motions

AMASS [25] is a popular motion repository, widely used by existing synthetic
datasets [2, 19, 41]. However, AMASS only contains single-person motions. As
a result, synthetic data is captured in virtual scenes populated with unrelated
single-person motions, typically scattered sparsely to avoid collision. However,
close human interactions are common in daily life, and difficult to solve. In this
light, we select two latest motion datasets that contain comprehensive interactive
human motions. First, DD100 [36], a duet dance motion capture dataset that
includes near two hours of partner dances of 10 different genres. Second, DLP-
MoCap [3], a motion capture dataset containing daily interactions between two
subjects. Since SMPL-XL models are fully compatible with SMPL-X body pose
sequences, we animate virtual characters with a combination of AMASS, DD100,
and DLP-MoCap.
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Fig. 4: Visualization of WHAC-A-Mole sample sequences, animated with a) AMASS,
b-c) DLP-MoCap, and d-e) DD100. In each sample, the first row depicts the overview
(note the camera trajectory shown in bright rays), and the second and the third rows
show the camera view and overlaid SMPL-X annotations.

4.2 Camera Trajectory Generation

To better model the camera movement, we adopt the representation in [31] to
define the camera in a human-centric spherical coordinate system (rc, θc, ϕc), in
which the rc represents the distance from the camera to the character, while
the polar angle θc and the azimuthal angle ϕc define the angle between the
camera’s looking direction and the character’s facing direction. Therefore, given
a character’s location (xch, ych, zch) and facing direction (θch, ϕch), the camera’s
location in the world space is

(xc, yc, zc) = (xch, ych, zch) + rc(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)), (13)

where the θ = (θc+θch) mod 2π, the ϕ = (ϕc+ϕch) mod 2π, and the camera’s
rotation is thereby calculated by restricting the camera look at the (xch, ych, zch).
In WHAC-A-Mole, we design two types of shot scales including the medium shot
and the full shot, which respectively use the location of the neck and the pelvis
as the character’s location (xch, ych, zch). For the motion sequences that consist
of multiple characters, the (xch, ych, zch) and the (θch, ϕch) are derived from the
average of the locations and the facing directions of all the characters. Based on
the human-centric spherical coordinate system (rc, θc, ϕc), we design different
keyframe-setting strategies to simulate five common camera movements below.
Detailed implementations for camera movements are included in the Supplemen-
tary Material.
- Arc shot adds equally-spaced keyframes to rotate the camera around the
character horizontally or vertically, with the controllable angular velocity.
- Push shot adds equally-spaced keyframes and moves the camera towards the
character with adjustable camera speed.
- Pull shot is opposite to the push shot and moves the camera further away
from the character. Continuous pushing and pulling is commonly used when
filming dances.
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- Tracking shot follows the character and maintains the relative position be-
tween the camera and the character. A new keyframe of the tracking shot is
added when the overlap ratio of the character’s bounding box in the current
frame and the last keyframe is greater than a threshold.
- Pan shot rotates the camera horizontally to keep the camera looking at the
character, therefore it is another way to make the camera follow the character,
and it shares the same rule with the tracking shot to add a new keyframe.

Rather than assigning a specific camera movement to an entire human motion
sequence, our pipeline automatically combines several types of camera move-
ments into one motion sequence to increase the variety of camera movements.
For example, when capturing static motions (whose longest edge of the bounding
box formed by the (xch, ych, zch) across all frames is less than a threshold λbbox)
or interactive motions, we combine the horizontal and the vertical arc shots with
the random pull or push shots to rotate the camera around the characters as
well as transiting smoothly between different shot angles, such as high-angle,
low-angle or eye-level, and pushing in or pulling out the distance between the
camera and the characters to increase the rhythm of the camera movement. For
the motions with long-distance movements, we combine the tracking shots and
the pan shots to follow the character. If the character’s facing direction is stable
(i.e., that the rotation angle from the character’s facing direction in the last
keyframe to the current keyframe is less than a threshold λangle), we use the
tracking shot. Otherwise, we use the pan shot. This rule effectively smooths the
camera’s movement, especially when the character turns dramatically.

5 Experiments

We evaluate WHAC on both camera-frame and world-grounded benchmarks to
compare its parametric human recovery abilities with existing SoTA methods.
Due to space constraints, we include inference speed comparison, more visual-
izations on trajectory reconstruction, and more qualitative results in the Sup-
plementary Material.

5.1 Implementation Details

We finetune SMPLer-X-B [5] with EgoBody, 3DPW, and EMDB for camera-
frame estimation of SMPL-X parameters. WHAC-A-Mole (with motions from
AMASS, DD100, and DLP-MoCap), 3DPW, EMDB, and RICH are used to train
the MotionVelocimeter. More details are in the Supplementary Material.

5.2 Datasets

In addition to our proposed WHAC-A-Mole, mainstream benchmarks for hu-
man pose and shape estimation with parametric human labels are used. EgoB-
ody [46] includes 125 sequences of 36 subjects in 15 indoor scenes, featuring 3D
human motions interacting with scenes. We study the EgoSet that is captured
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Table 2: World-frame evaluation on WHAC-A-Mole (DD subset). *: adapted to
world-grounded evaluation. H-AS and C-AS: the closer to 1.0, the better.

PA-MPJPE↓ W-MPJPE↓ WA-MPJPE↓ H-ATE↓ H-AS C-ATE↓ C-AS

OSX* [22] + DPVO [39] 92.3 1123.2 413.2 202.64 0.6 0.5 6.1
SMPLer-X-B* [5] + DPVO [39] 83.4 958.2 362.5 156.7 0.6 0.5 6.1
WHAC (GT Gyro) 78.6 435.0 211.2 118.2 0.9 0.5 1.3
WHAC 78.6 434.9 211.2 118.2 0.9 0.5 1.3

by a head-mounted camera; 2) 3DPW [26], a popular dataset with 60 sequences
captured by an iPhone, featuring diverse human activities in outdoor scenes; 3)
EMDB [17] provides 58 minutes of motion data of 10 subjects in 81 indoor
and outdoor scenes. Notably, it contains a subset, EMDB 2, that contains global
trajectories of humans and cameras. 4) RICH [14] consists of 142 multi-view
videos with 22 subjects and 5 scenes with 6-8 fixed cameras. RICH is not used
for evaluation as the cameras are static.

5.3 Evaluation Metrics

For camera-frame human recovery, we use the standard Mean Per Joint Position
Error (MPJPE), Procrustes-aligned MPJPE (PA-MPJPE), Per Vertex Error
(PVE) in millimeters (mm), and Acceleration error (Accl.) in m/s2. Note that
these metrics are evaluated after root alignment between estimated and ground
truth parametric humans, thus not considering discrepancy in translation esti-
mation. In this light, we also report T-MPJPE [1] and similarly T-PVE, which
are variants of MPJPE and PVE that includes translation estimation to reflect
the accuracy of depth estimation in the camera space.

For world-frame human/camera recovery, we follow previous works [19,35,42] to
split human motion sequences with global trajectory into 100-frame segments.
The segments are Procrustes-aligned to the ground truth for MPJPE computa-
tion: W-MPJPE100 if the first two frames are used in the alignment or WA-
MPJPE100 if the entire segment. To evaluate the quality of trajectory, we ex-
tend Average Trajectory Error (ATE) [19] to C-ATE and H-ATE for camera
and human respectively, which are computed after Procrustes-alignment of es-
timated and ground truth trajectories. All metrics are in millimeters (mm). We
also report respective Alignment Scales (AS) used in the alignment for the cam-
era (C-AS) and human (H-AS) and values closer to 1.0 indicate more accurate
scale estimation.

5.4 World-grounded Benchmarks

We evaluate on EMDB2 [17] and WHAC-A-Mole in Tab. 2 and Tab. 3. WHAC-
A-Mole provides expressive human (i.e., SMPL-X), with accurately annotated
camera motions. Since no existing EHPS methods produce SMPL-X in the world
coordinate system and a strictly fair comparison is not plausible, we build the
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Table 3: World-frame evaluation on EMDB2. *: adapted to world-grounded evalua-
tion. H-AS and C-AS: the closer to 1.0, the better.

PA-MPJPE↓ W-MPJPE↓ WA-MPJPE↓ H-ATE↓ H-AS C-ATE↓ C-AS

GLAMR [44] 56.0 756.1 286.2 - - - -
SLAHMR [42] 61.5 807.4 336.9 207.8 1.9 - -
WHAM [35] (GT Gyro) 41.9 436.4 165.9 83.2 1.5 - -

OSX-L* [22] + DPVO [39] 99.9 1186.2 458.8 235.4 2.3 14.8 5.1
SMPLer-X-B* [5] + DPVO [39] 42.5 930.1 375.8 200.6 2.0 14.8 5.1
WHAC (GT Gyro) 39.4 392.5 143.1 75.8 1.1 14.8 1.5
WHAC 39.4 389.4 142.2 76.7 1.1 14.8 1.4

Table 4: Results of camera-frame methods on EgoBody (EgoSet) with SMPL-X
ground truths. PVE variants are measured for whole-body (SMPL-X) methods only.

PA-MPJPE↓ PA-PVE-all↓ PVE-all↓ PVE-hand↓ PVE-face↓ Accl.↓

GLAMR [44] 114.3 - - - - 173.5
SLAHMR [42] 79.1 - - - - 25.8

Hand4Whole [27] 71.0 59.8 127.6 48.0 41.2 27.2
OSX-L [22] 66.5 54.6 115.7 50.5 41.0 24.7
SMPLer-X-B [5] 47.1 40.7 72.7 43.7 32.4 18.9
WHAC 46.9 39.0 64.7 41.0 26.3 11.6

first benchmark by making two adaptations to the SoTA methods (OSX [22]
and SMPLer-X [5]): camera-frame translation estimation and visual odometry.
Implementation details are included in the Supplementary Material. It is noted
that methods that achieve good results on EMDB still struggle on WHAC-A-
Mole, which can be attributed to the more challenging scenarios of WHAC-A-
Mole (involving hard poses, diverse interactions, occlusions, and complicated
camera movements). We hope WHAC-A-Mole can serve as a useful foundation
for future world-grounded EHPS research.

Moreover, we compare WHAC with both body-only methods (GLAMR [44],
SLAHMR [42], and WHAM [35]) and whole-body methods (OSX-L [22] and
SMPLer-X [5]) on EMDB2, where WHAC achieves best performance, even sur-
passing body-only methods that are native to EMDB’s SMPL annotations.

5.5 Camera-space Benchmarks

In Tab. 4, it is shown that WHAC outperforms existing SoTAs. We highlight that
1) WHAC archives immense T-PVE-all improvement, which captures absolute
depth estimation from humans to cameras. This is because WHAC formulates
the subject distance to the camera. 2) With temporal information embedded in
the EHPS module, WHAC attains substantial reductions in acceleration error
(Accl.) compared to previous single-frame SoTAs. Moreover, temporal cues also
lead to significant performance gains in hand and face estimation. In Tab. 5, we
further evaluate WHAC on EMDB and 3DPW, where the plausibility of camera-
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Table 5: More camera-frame evaluations on EMDB1 and 3DPW. Compared to
existing mainstream EHPS methods, WHAC recovers meaningful human depths (T-
PVE) and achieves lower acceleration errors (Accl.).

Method EMDB1 [17] 3DPW [26]

PA-PVE↓ PVE↓ T-PVE↓ Accl.↓ PA-PVE↓ PVE↓ T-PVE↓ Accl.↓

Hand4Whole [27] 99.5 143.1 36851.8 34.2 81.7 124.7 30279.0 31.0
OSX-L [22] 93.3 134.0 45526.0 30.3 76.9 117.8 38472.2 24.9
SMPLer-X-B [5] 68.2 99.3 41298.0 24.4 62.6 95.6 32532.0 24.8
WHAC 61.0 91.2 140.2 18.4 62.8 91.9 260.8 20.3

Table 6: Results of camera-frame methods on WHAC-A-Mole (DD subset). WHAC
is on par with SMPLer-X but produces a lower acceleration error.

PA-MPJPE↓ PA-PVE-all↓ PVE-all↓ PVE-hand↓ PVE-face↓ Accl.↓

OSX-L [22] 94.4 92.3 167.9 85.5 89.7 42.3
SMPLer-X-B [5] 83.4 82.0 138.0 75.7 75.2 50.3
WHAC 78.6 78.1 130.1 80.2 70.8 36.6

frame human translation estimation and the significance of temporal modeling
are validated again.

Albeit WHAC-A-Mole is mainly designed for world-grounded evaluation of
human and camera pose sequences, we evaluate WHAC’s performance under
the camera-frame setting on WHAC-A-Mole in Tab. 6. Similar to previous ex-
periments, it is observed that WHAC is on par with SMPLer-X with better
performance on the acceleration error.

5.6 Ablation Study

We evaluate the necessity of the key components in Tab. 7 on EMDB2 [17].
It is observed that using visual odometry alone (body trajectory depends on
estimated camera trajectory) leads to accurate camera trajectory shape (lowest
camera trajectory error) but lacks accurate scale (alignment scale is far from 1.0).
Using MotionVelocimeter alone (camera trajectory depends on estimated body
trajectory), results in very accurate scale recovery but less accurate in camera
trajectory. WHAC leverages the scale recovery ability of MotionVelocimeter and
visual odometer, achieving high-quality body and camera trajectories with only
a slight decline in scale accuracy.

5.7 Visualization

We highlight that WHAC is the first regression-based, whole-body method that
simultaneously predicts camera and human trajectories. We highlight that the
camera provides supplementary cues to human motions. In Fig. 5 a) and b), we
test two corner cases where the human motion itself can be misleading: when
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Table 7: Ablation on key components.
DPVO represents visual odometry, MV
represents MotionVelocimeter.

Method WA-MPJPE↓ H-ATE↓ C-ATE↓ C-AS

DPVO 376.0 177.8 14.8 5.10
MV 233.2 129.9 134.1 1.10
MV + DPVO 142.2 76.7 14.8 1.40

Table 8: Ablation on intrinsic sources.
A reasonable intrinsic drastically improve
root translation estiamtion on EMDB2.

Intrinsics T-MPJPE↓ W-MPJPE↓ WA-MPJPE↓

Dummy(5,000) 36020.4 6239.9 604.6
Assumed [18] 179.7 391.2 144.0
GT Intrinsics 100.3 389.4 142.2

WHAC (Ours)
WHAM

a) b) c)

Fig. 5: Visualization on in-the-wild hard cases. WHAC leverages human-camera-
scene collaboration to resolve cases where motion prior alone would fail: a) Skate-
boarding and b) Treadmill. c) WHAC can also handle fast cases.

human pose appears stationary but there is root movement in the world coordi-
nates (e.g ., skateboarding), and when human pose clearly indicates motion but
there is no root movement in the world coordinates (e.g ., running on a tread-
mill). Our formulation considers both motion and camera cues to predict the
correct trajectories whereas WHAM fails, which leverages foot contact and lock-
ing but no camera information in human’s global trajectory estimation. We also
show complicated scenarios on c) in-the-wild video from TikTok, which features a
fast-moving subject. Our MotionVelocimeter can estimate reasonable root move-
ment, whereas WHAM’s contact estimation and foot-locking results in a floating
subject. More visualizations are included in the Supplementary Material.

6 Conclusion

In conclusion, we present WHAC, the pioneering regression-based EHPS method
that jointly recovers human motions and camera trajectories in the world co-
ordinate system. Moreover, our WHAC-A-Mole serves as a useful benchmark
for the evaluation of world-grounded EHPS methods. WHAC achieves SoTA
performance on both standard benchmarks and our proposed WHAC-A-Mole,
demonstrating strong potentials for downstream applications.
Limitations. WHAC-A-Mole includes a rich collection of multiperson scenar-
ios that may require special algorithm designs to tackle close interaction and
occlusions, which WHAC lacks. We leave this to the future work.
Potential negative societal impact. WHAC may be used for unwarranted
surveillance as it recovers human trajectories in the world frame.
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